¹ú²úÎÞÂë

4
RUDN University ecologists developed new models to identify environmental pollution sources

RUDN University ecologists developed new models to identify environmental pollution sources

According to a team of ecologists from RUDN University, polycyclic aromatic hydrocarbons (PAHs) can be used as pollution indicators and help monitor the movement of pollutants in environmental components such as soils, plants, and water. To find this out, the team conducted a large-scale study of a variety of soil, water, and plant samples collected from a vast area from China to the Antarctic. The results of the study were published in the Applied Geochemistry journal.

Geochemical barriers mark the borders between natural environments at which the nature of element transfer changes dramatically. For example, the concentration of oxygen rapidly increases at groundwater outlets, because different chemical elements oxidize and accumulate on the barrier. A team of ecologists from RUDN University was the first in the world to suggest a model that describes the energy of mass transfer, i.e. the movement of matter in an ecosystem. In this model, polycyclic aromatic hydrocarbons (PAHs) are used as the markers of moving substances. PAHs are mainly toxic organic substances that accumulate in the soil. The team used their composition to monitor pollutions and track down their sources. To do so, the ecologists calculated the physical and chemical properties of PAHs and classified them.

“We developed a model that shows the accumulation, transformation, and migration of PAHs. It is based on quantitative measurements that produce more consistent results than descriptive visualizations. This helped us understand how physical and chemical properties of PAHs determine their accumulation in the environment,” said Prof. Aleksander Khaustov, a PhD in Geology and Mineralogy, from the Department of Applied Ecology at RUDN University.

PAHs can form due to natural causes (e.g. wildfires) or as a result of human activity, for example as the waste products of the chemical and oil industry. The team studied 142 water, plant, soil, and silt samples from different geographical regions. Namely, some samples were taken in the hydrologic systems of the Kerch Peninsula, some came from leather industry areas in China, from the vicinity of Irkutsk aluminum smelter, and different regions of the Arctic and Antarctic. Several snow samples were taken on RUDN University campus in Moscow. All collected data were unified, and then the amount of PAHs in each sample was calculated. After that, the results were analyzed in line with the thermodynamic theory to calculate entropy, enthalpy, and Gibbs energy variations. The first value describes the deviation of an actual process from the ideal one; the second one shows the amounts of released or consumed energy, and the third points out the possibility of mass transfer.

“Though our samples were not genetically uniform, they allowed us to apply thermodynamic analysis to matter and energy transfer in natural dissipative systems,” added Prof. Aleksander Khaustov.

The team identified several factors that have the biggest impact on PAHs accumulation. For example, in the ecosystems surrounding leather facilities in China, the key factor turned to be entropy variations, while on RUDN University campus it was the changes in Gibbs energy. The team described three types of processes that are characterized by the reduction, stability, or increase of all three thermodynamic parameters, respectively. Based on this classification and the composition of PAHs one can monitor pollution and track down its source.

The article was published in .

Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
2259
International Projects View all
Similar newsletter View all
08 Aug
Focusing on science as a way of life, sustainable development goals as a scientist's mission and new technological developments: RUDN honored leaders in science and innovation

The RUDN University Science and Innovation Prize winners were honoured at the extended meeting of the Academic Council. In 2024 the terms of the traditional RUDN University Prize were changed: for the first time the competition was announced in two categories: leading scientists and young scientists.

114
08 Aug
RUDN University scientist: Africa relies on small modular reactors to solve energy problems

According to the International Energy Agency (IEA), electricity consumption in Africa has increased by more than 100% over the past two years (2020-2022). However, 74.9% of this energy is still produced by burning organic fuels — natural gas, coal and oil. At the same time, the level of electrification on the continent remains extremely low — only 24%, while in other developing countries it reaches 40%. Even in grid-connected areas, electricity supply is often unreliable: industrial enterprises lose energy on an average of 56 days a year.

102
08 Aug
RUDN dentists developed a program that will accelerate the work of an orthodontist by 40%

Today, diagnosis and treatment planning with orthodontists takes several days. Also, complications can arise during treatment that slow down the patient's recovery process. For example, improper orthodontic treatment planning can lead to temporomandibular joint dysfunction.

64
Similar newsletter View all