1
Microorganisms will save from oil pollution

Microorganisms will save from oil pollution

Alexander Elansky, a fourth-year student at the Agrarian and Technological Institute (RUDN has studied microorganisms (fungi and bacteria) that live in contaminated oil products. Selected active strains of such microorganisms capable of destroying oil and its products can be used both for remediation of areas contaminated with oil products and for accelerated utilization of waste oil-containing technical fluids.

Recently, we have become more and more aware of the negative consequences of technological development, and the problem of environmental pollution is coming to the forefront all over the world. RUDN student approached to this issue thoroughly and conducted a research work to solve the problem of environmental pollution.

Together with the ATI research team, they succeeded in achieving the main goal, gathering a collection of microorganisms that grow in substrates containing petroleum products. The theory behind this research is that microorganisms living in oil-containing substrates are able to feed on them and decompose them down into products used by other living organisms. If strains of fungi or bacteria that actively consume petroleum products can be found, they can be added to contaminated soil, which they will clean up. In addition, they could be used to accelerate the disposal of oil-containing industrial products, such as coolants.

How did you manage to gather a collection of microorganisms?

My research supervisor, Elena Chudinova, gave samples of contaminated diesel fuel from an oil storage tank located in African Gambia for analysis. Subsequently, we collected samples of contaminated diesel fuel from the tanks of agricultural machinery in the Moscow region and samples of spent coolant from metalworking plants in Russia.

What did you do next with the microorganisms?

First, you seeded the contaminated substrate from the samples onto a Petri dish with a nutrient medium on which microbial colonies develop: bacteria and fungi. They grow in small specks of different colors and shapes. Then, each speck was separately and sterilely transplanted to another Petri dish, where it continued to grow alone. This is how pure cultures of microorganisms obtain; one Petri dish must contain only one organism of a fungus or bacterium.

In each microorganism isolated in this manner, sequences of those DNA fragments were determined by PCR and sequencing, by which its species could be identified. In this way, a collection of microorganisms living in substrates containing petroleum products was created and studied.

Can we say that such microorganisms are capable of absorbing oil?

Because they live in this substrate, they need something to eat in order to exist; accordingly, they feed on oil. In the process of feeding the microorganism strains we selected, the heavy hydrocarbons of oil are processed into shorter ones, which other living organisms can consume as food.

How can the selected microorganisms be used in practice?

They can be used to create biopreparations that are effective, non-toxic, do not require special storage conditions and are easy to use. We can work out how to produce the right microorganisms, select optimal media and conditions for their cultivation, and propose stabilization methods to simplify storage, transport and use of the biopreparations created.

These days, there is an increase in industrial production worldwide and in Russia, which leads to an increase for a technogenic waste that needs to be disposed of. Accidents involving the release of environmentally harmful oil products are occurring more frequently, as happened recently in Norilsk. Modern, safe and environmentally friendly ways of disposing of waste and remediating disturbed areas are therefore needed. The best way to solve this problem is to use biological preparations, which makes Alexander’s research extremely relevant.

Research and Innovative Activity View all
30 Dec 2020
In 2017, RUDN University scientists constructed a new explicit second-order precision difference scheme using modern computer algebra methods for 2-dimensional Navier-Stokes equations (NSE) [1]. This year, our mathematicians used a new scheme [2] to construct a numerical solution to the Cauchy problem with initial data (for t=0) as satisfying the continuity equation. Scientists managed to achieve previously unattainable accuracy of the continuity equation.
1651
Scientific Conferences View all
12 Dec 2024
About 200 participants from Russia and 20 countries met at the National Interdisciplinary Scientific Seminar with International Participation “Law in Medicine. Medicine in Law: Points of Contact”. The subject was “Happy Motherhood: unsolved problems of obstetrics, gynaecology and perinatology”.
367
Similar newsletter View all
08 Aug
For the first time RUDN hosted the youth student works competition in memory of Petr Kucherenko

RUDN University summed up the results of the I International Student Competition in memory of Professor Pyotr Kucherenko. More than 100 applications were submitted from students of the Law Institute.

85
08 Aug
Autologous macrophages of rats: a study by young scientists of RUDN became the best at the XX Pirogov Conference

The research of young scientists of RUDN Medical Institute is the best among the oral presentations in the section “Molecular Medicine” at the XX International (XXIX All-Russian) Pirogov Scientific Medical Conference of Students and Young Scientists.

88
08 Aug
RUDN University medical students became participants and prize-winners of the Medscan Community of Young Scientists project

Students of the RUDN University Medical Institute participated in the scientific and educational program “Community of Young Scientists” of the Hadassah Medical Moscow Clinic.

27
Similar newsletter View all