¹ú²úÎÞÂë

1
RUDN mathematician improved the machine learning algorithm for recognizing images from satellites

RUDN mathematician improved the machine learning algorithm for recognizing images from satellites

Mathematician from RUDN proposed a machine learning method that allows to automatically recognize images from satellites and aircraft radars. The algorithm can determine which type of plant is planted in the fields more accurately than previously existing developments.

Modern satellite and radar systems can be used to automatically monitor earthquakes, volcanic eruptions, fires, and other disasters, as well as to monitor the condition of soil, vegetation, and rivers. To automate this process, complex algorithms need to recognize and classify objects, allowing the computer to understand from a set of pixels what is depicted on the image. Machine learning is used for this purpose, a computer “looks through” thousands of examples and thus learns to recognize images independently. To improve machine learning results, a combination of several training algorithms is often used. This yields more accurate solutions than each of them separately. The RUDN mathematician developed such an ensemble method using three algorithms to process data from multiple sources.

Mathematicians used data from five RapidEye mini-satellites and the UAVSAR airborne radar on July 5 and 7, 2012, they captured the same area in Canada. The RapidEye imagery was acquired in five bands of the light spectrum: blue (B), green (G), red ®, near-infrared (NIR) and a region called “red edge” (RE) where the reflection of green vegetation is dramatically enhanced. The data contained 38 features: spectral channels, vegetation indices, texture parameters, and etc. Their spatial resolution, that is, the minimum object size distinguishable in the images was about five meters. UAVSAR radar images included 49 different features, with a spatial resolution of about 15 meters. Mathematicians compared the images with reference data on the area collected in the summer of 2012. They identified seven types of plants, broadleaf plants, rapeseed, corn, oats, peas, soybeans and wheat. The new algorithm was “trained” based on examples of images and planting type data, and then compared its prediction with the results of other programs based on a similar principle.

The new method showed higher accuracy in interpreting images, both on large and limited amounts of examples for training algorithms. If training was performed on 5% of all data, the new algorithm recognized images correctly at least 65% of the time, while the other algorithms were correct in 52-60% of cases. With an increase in the share of training data to 50% of the total volume, the accuracy of the new algorithm increased to almost 90%, and the other algorithms increased to 75-86%. Thus, the application of the new algorithm was found to be more effective.

“Our method can be proposed for a land use and land cover classification system using data from different sources. For example, Landsat or Sentinel constellation satellites,” Vladimir Razumny, Ph.D., Associate Professor at the RUDN Mechanical and Mechatronics Engineering department.

The article was published in 

Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
2114
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
2259
Similar newsletter View all
08 Aug
Focusing on science as a way of life, sustainable development goals as a scientist's mission and new technological developments: RUDN honored leaders in science and innovation

The RUDN University Science and Innovation Prize winners were honoured at the extended meeting of the Academic Council. In 2024 the terms of the traditional RUDN University Prize were changed: for the first time the competition was announced in two categories: leading scientists and young scientists.

114
08 Aug
RUDN University scientist: Africa relies on small modular reactors to solve energy problems

According to the International Energy Agency (IEA), electricity consumption in Africa has increased by more than 100% over the past two years (2020-2022). However, 74.9% of this energy is still produced by burning organic fuels — natural gas, coal and oil. At the same time, the level of electrification on the continent remains extremely low — only 24%, while in other developing countries it reaches 40%. Even in grid-connected areas, electricity supply is often unreliable: industrial enterprises lose energy on an average of 56 days a year.

102
08 Aug
RUDN dentists developed a program that will accelerate the work of an orthodontist by 40%

Today, diagnosis and treatment planning with orthodontists takes several days. Also, complications can arise during treatment that slow down the patient's recovery process. For example, improper orthodontic treatment planning can lead to temporomandibular joint dysfunction.

63
Similar newsletter View all