2
RUDN Chemists discovered three complex compounds with rare magnetic properties

RUDN Chemists discovered three complex compounds with rare magnetic properties

A chemist from RUDN has synthesized and described three compounds with manganese atoms in the center. They can be used as catalysts or new generation information storage cells.

Coordination complex is complex structure with a metal atom in the center, to which various ligand molecules are attached. If there are more than two of these atoms, the compounds are referred to as multinuclear. In this case, the metal framework can look like chains, branched cycles, polyhedra or their combinations. Non-standard bonds between metals allow obtaining compounds with unusual metal oxidation states and pronounced catalytic properties. This allows their application in the synthesis of drugs, varnishes, and paints, as well as in other branches of the chemical industry. In addition, the magnetic properties of such complexes can be used for new ways to store information. Manganese also forms complex compounds, for example, inside chlorophyll, through which photosynthesis occurs. However, multinuclear complexes with manganese are often unstable. RUDN chemists reported the synthesis of several compounds of this class at once.

"In this paper, we describe the synthesis methods, crystal structure, and magnetic properties of three new multinuclear mixed valence clusters that we were able to obtain from manganese (II) chloride," co-author Dmitro Nesterov from RUDN.

The valence is indicated by Roman numerals and shows the ability to form a certain number of chemical bonds. Two of the described compounds are tetranuclear and contain two manganese atoms each with valence II and two each with valence III. In [MnII2MnIII2(HBuDea)2 2(BuDea)2(EBA)4] the ligands were 2-ethyl ether of butyric acid and N-butyl diethanolamine, and in the second compound [MnII2MnIII2(HBuDea) 2(BuDea)2(DMBA)4] - N-butyl diethanolamine and 2,2-dimethyl ether of butyric acid. In the third compound, three manganese II atoms, eight manganese III atoms, and four oxygen atoms form an eleven-nuclear structure to which the ligands N-butyldietanolamine and 2,2-dimethyl ester of butyric acid are attached.

RUDN chemist and his colleagues from Slovakia and Portugal succeeded in obtaining these complexes using self-assembly reactions. The synthesis requires manganese (II) chloride, a solution of carbolic acid in methanol, and 2-ethyl ester of butyric acid for the first compound, and 2,2-dimethyl ester of butyric acid for the second and third. Whether the second route produced a four-nuclear or an eleven-nuclear cluster depended on the experimental conditions. X-ray crystallography showed that both quadruple nuclei had a similar symmetrical structure, while the third had a non-standard structure. The quaternary complexes exhibited the properties of a single-molecule magnet - that is, they can form superparamagnetic materials. This means that they can be uniformly magnetized throughout their volume and change their magnetic moment depending on temperature. The eleven-nucleus cluster, on the contrary, had antiferromagnetic properties, i.e., the magnetic moments of the particles in such a substance are in pairs directed in opposite directions.

"Also in the paper we discussed the possible influence of intramolecular effects and the different surroundings of the magnetic nuclei that the 2-ethyl ester of butyric acid and 2,2-dimethyl ester of butyric acid ligands formed. Superparamagnetics and antiferromagnetics exhibit unusual properties that could be used in future high-tech applications. For example, they can become the basis for new generation memory cells, where only a few tens of atoms are required to record information," Nesterov added.

The results of the study were published in .

Scientific Conferences View all
12 Dec 2024
About 200 participants from Russia and 20 countries met at the National Interdisciplinary Scientific Seminar with International Participation “Law in Medicine. Medicine in Law: Points of Contact”. The subject was “Happy Motherhood: unsolved problems of obstetrics, gynaecology and perinatology”.
370
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
2259
Similar newsletter View all
08 Aug
Focusing on science as a way of life, sustainable development goals as a scientist's mission and new technological developments: RUDN honored leaders in science and innovation

The RUDN University Science and Innovation Prize winners were honoured at the extended meeting of the Academic Council. In 2024 the terms of the traditional RUDN University Prize were changed: for the first time the competition was announced in two categories: leading scientists and young scientists.

114
08 Aug
RUDN University scientist: Africa relies on small modular reactors to solve energy problems

According to the International Energy Agency (IEA), electricity consumption in Africa has increased by more than 100% over the past two years (2020-2022). However, 74.9% of this energy is still produced by burning organic fuels — natural gas, coal and oil. At the same time, the level of electrification on the continent remains extremely low — only 24%, while in other developing countries it reaches 40%. Even in grid-connected areas, electricity supply is often unreliable: industrial enterprises lose energy on an average of 56 days a year.

102
08 Aug
RUDN dentists developed a program that will accelerate the work of an orthodontist by 40%

Today, diagnosis and treatment planning with orthodontists takes several days. Also, complications can arise during treatment that slow down the patient's recovery process. For example, improper orthodontic treatment planning can lead to temporomandibular joint dysfunction.

64
Similar newsletter View all