¹ú²úÎÞÂë

3
Mathematician proposes model describing virus mutations

Mathematician proposes model describing virus mutations

A team of specialists in mathematical modeling from the RUDN University suggested a qualitative model of virus evolution and of the occurrence of new strains. The results of the study can make predicting virus behavior more efficient and help in the development of new antiviral medications.

The interaction between a virus and a human body is a very complex phenomenon that can be reduced to two processes: a virus multiplies in host cells, and the organism resists the infection by means of the immune response. A closer look at a virus infection shows that viruses compete for host cells, change under the influence of antiviral drugs, and mutate during its replication. They can evolve at a very high speed by means of modifying old or acquiring new RNA or DNA sequences. Because of these and many other factors, it is difficult for biologists to predict the dynamics of virus evolution, foresee the occurrence of new strains, and assess their potential resistance levels.

The team of Vitaly Volpert, a mathematician from RUDN University, suggested a mathematical model describing the evolution and diversification of virus quasispecies. The  shows a dynamic interaction between the replication, mutation, and elimination of a virus. The results of the work may be further used to predict the occurrence of virus strains capable of avoiding immune recognition and resisting antiviral medications.

“To keep it simple, the model shows us that existing strains evolve in order to reduce competition between viruses, to weaken virus elimination by the immune response, and to become less sensitive to medication. This tendency leads to the occurrence of drug-resistant strains,” says Vitaly Volpert.

Working together with his colleagues, the scientist described a virus strain as a localized solution concentrated around a given genotype. The emergence of new strains corresponds to a periodic wave propagating in the space of genotypes. The occurrence of new distribution peaks in the process of wave propagation coincides with the occurrence of new virus strains. The team described the conditions of occurrence of periodic traveling waves and their dynamics analyzing the stability of spatially homogeneous stationary solutions.

The model is represented by a nonlocal reaction-diffusion equation for the virus density. The equation has two integral terms that correspond to the nonlocal effects of virus interaction with host cells and immune cells.

The new model is qualitative and applicable to different viral infections. However, to better describe the dynamics of virus quasispecies, one needs to know their individual features, such as the nature of their mutations, interaction with the immune system, and response to antiviral medication.

“Using our model, one can develop various methods to prevent the spread of viral infections across body tissues and the occurrence of new , i.e. the propagation in the space of genotypes. However, for these approaches to have a practical implementation, they should be combined with experimental and clinical data,” adds Vitaly Volpert.

The model has a number of limitations because it is based on several simplifications. Namely, it does not take into account the existence of the variety of immune cells and cytokines (small informative peptide molecules) that take part in the immune response, or complex processes of intracellular regulation and virus replication. However, these limitations help the scientists to determine some common evolutionary features of quasispecies that would be difficult to identify in a more complex model. The work of the team can be used as a basis for further investigations.

The article was published in the journal . 

30 Jan 2018
The conference on international arbitration, where law students from European universities simulate court proceedings and alternately defend the interests of the respondent and the orator.
1577
Visiting Professors View all
12 Dec 2024
In 2024, RUDN started accepting applications for the new annual Prize for Scientific Achievement in Chemistry. The award was established to honour contributions to fundamental and applied research, as well as merit in achieving the UN Sustainable Development Goals.
469
Similar newsletter View all
08 Aug
Focusing on science as a way of life, sustainable development goals as a scientist's mission and new technological developments: RUDN honored leaders in science and innovation

The RUDN University Science and Innovation Prize winners were honoured at the extended meeting of the Academic Council. In 2024 the terms of the traditional RUDN University Prize were changed: for the first time the competition was announced in two categories: leading scientists and young scientists.

114
08 Aug
RUDN University scientist: Africa relies on small modular reactors to solve energy problems

According to the International Energy Agency (IEA), electricity consumption in Africa has increased by more than 100% over the past two years (2020-2022). However, 74.9% of this energy is still produced by burning organic fuels — natural gas, coal and oil. At the same time, the level of electrification on the continent remains extremely low — only 24%, while in other developing countries it reaches 40%. Even in grid-connected areas, electricity supply is often unreliable: industrial enterprises lose energy on an average of 56 days a year.

102
08 Aug
RUDN dentists developed a program that will accelerate the work of an orthodontist by 40%

Today, diagnosis and treatment planning with orthodontists takes several days. Also, complications can arise during treatment that slow down the patient's recovery process. For example, improper orthodontic treatment planning can lead to temporomandibular joint dysfunction.

64
Similar newsletter View all